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We present the main algorithmic features in the software package SuperLUDIST, a distributed-
memory sparse direct solver for large sets of linear equations. We give in detail our parallelization
strategies, with a focus on scalability issues, and demonstrate the software’s parallel performance
and scalability on current machines. The solver is based on sparse Gaussian elimination, with an
innovative static pivoting strategy proposed earlier by the authors. The main advantage of static
pivoting over classical partial pivoting is that it permits a priori determination of data structures
and communication patterns, which lets us exploit techniques used in parallel sparse Cholesky
algorithms to better parallelize both LU decomposition and triangular solution on large-scale
distributed machines.
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1. INTRODUCTION

Parallelizing sparse direct solvers has been an active research area in the past
decade. Our goal is to implement a sparse direct solver for nonsymmetric ma-
trices as scalably as possible on distributed memory machines.
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It is important to say exactly what we mean by scalability, because it has
some reasonable sounding but unachievable interpretations. For instance, if
the n-by-n matrix equation to be solved arises from a differential equation like
Laplace’s equation, then we cannot aspire to achieve the O(n) complexity of
methods like multigrid. We also do not claim linear speedups for fixed problem
sizes, since this depends so much on the particular sparse matrix structure.
However, we do come close to linear speedups for constant-work-per-processor
scaling on reasonable model problems (see Section 4.4).

More precisely, for us scalability will mean “as scalable as solving a sym-
metric positive definite (spd) linear system by a sparse direct method,” or more
briefly “as scalable as sparse Cholesky.” The reason for this is that the nonsym-
metric problem is strictly more difficult than the spd case, so that we cannot
hope to do better in general. Our claim of scalability is based on our ability
to use all the techniques exploited to parallelize sparse Cholesky (see below).
The price we pay is a very small probability of numerical instability. We note
that this numerical instability never occurred on our extensive test set for the
default parameter settings of our code, and in any event is always detected and
reported by the code.

The advantage of sparse Cholesky over the nonsymmetric case is that pivots
can be chosen in any order from the main diagonal while guaranteeing stabil-
ity. This lets us perform pivot choice before numerical factorization begins,
in order to minimize fill-in, maximize parallelism, precompute the nonzero
structure of the Cholesky factor, and optimize the two-dimensional(2D) dis-
tributed data structures and communication pattern. Researchers have been
quite successful in achieving “scalable” performance for sparse Cholesky factor-
ization; available codes include CAPSS [Heath and Raghavan 1997], MUMPS-
SYM [Amestoy et al. 2001a], PaStix [Henon et al. 1999], PSLDLT [Rothberg
1996], and PSPACES [Gupta et al. 1997].

In contrast, for nonsymmetric or indefinite systems, few distributed-memory
codes exist. They are more complicated than Choleksy for at least two reasons.
First and foremost, some kind of numerical pivoting is necessary for stability.
Classical partial pivoting [Golub and Van Loan 1996] or the sparse variant
of threshold pivoting [Duff et al. 1986] typically cause the fill-ins and work-
load to be generated dynamically during factorization. Therefore, we must ei-
ther design dynamic data structures and algorithms to accommodate these
fill-ins [Amestoy et al. 2001a], or else use static data structures which can
grossly overestimate the true fill-in [Fu et al. 1998; Gupta 2001]. The second
complication is the need to handle two factored matrices L and U, which are
structurally different yet closely related to each other in the filled pattern. Un-
like the Cholesky factor whose minimum graph representation is a tree (called
the elimination tree, or etree for short) [Liu 1990], the minimum graph repre-
sentations of the L and U factors are directed acyclic graphs (called elimination
DAGS, or edags for short) [Gilbert 1994; Gilbert and Liu 1993].

Despite these difficulties, researchers have been addressing these issues suc-
cessfully for sequential and shared memory machines; available codes include
MAA41 [Amestoy and Duff 1993; Amestoy and Puglisi 2002], PARDISO [Schenk
et al. 2000], SPOOLES [Ashcraft and Grimes 1999], SuperLLU [Demmel et al.
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1999a], SuperLU_MT [Demmel et al. 1999b], UMFPACK/MA38 [Davis and Duff
1999], and WSMP [Gupta 2000].

In our earlier codes SuperLU (serial) and SuperLU_MT (shared-memory), we de-
vised efficient “symbolic” factorization algorithms to accommodate the dynam-
ically generated fill-ins due to partial pivoting. The symbolic algorithm could
not be decoupled from the numerical factorization; instead, it was interleaved
with the numerical algorithm as the numerical factorization proceeded. These
symbolic factorization algorithms are not suitable for distributed-memory ma-
chines, because they involve fine-grained memory access and synchronization
to manage the data structures and identify task and data dependencies. This
would generate large numbers of small messages.

Therefore, for SuperLU DIST, which is targeted for large-scale distributed-
memory machines, we use a static pivoting approach, called GESP (Gaus-
sian elimination with static pivoting), proposed earlier by the authors [Li and
Demmel 1998]. We parallelized the GESP algorithm using Message Passing
Interface (MPI) [MPI n.d]. Our parallelization strategies center around the
scalability concern. We use a 2D block-cyclic mapping of a sparse matrix to
the processors, and designed an efficient pipelined algorithm to perform par-
allel factorization. With GESP, the parallel algorithm and code are much sim-
pler than if we had to pivot dynamically. The main algorithmic features of
SuperLU_DIST solver are summarized as follows:

—supernodal fan-out (right-looking) based on elimination directed asyclic
graphs (DAGs),
—static pivoting with possible half-precision perturbations on the diagonal,

—use of an iterative algorithm using the LU factors as a preconditioner, in
order to guarantee stability,

—static 2D irregular block-cyclic mapping using supernodal structure, and
—loosely synchronous scheduling with pipelining.

In particular, static pivoting can be performed before numerical factorization,
allowing us to use all the techniques in good parallel sparse Cholesky codes:
choice of a (symmetric) permutation to minimize fill-in and maximize paral-
lelism, precomputation of the fill pattern, and optimization of 2D distributed
data structures and communication patterns.

The rest of the paper is organized as follows. In Section 2 we demonstrate the
numerical stability, the sequential runtime efficiency and the ordering schemes
of the GESP algorithm. In Section 3, we present an MPI implementation of
the distributed algorithms for LU factorization and triangular solutions. In
Section 4, we present and analyze the parallel performance and scalability
results. Section 5 describes the related work and compares SuperLU DIST with
some other solvers. Section 6 offers our concluding remarks and presents future
work.

2. THE GESP ALGORITHM

Recall that the role of numerical pivoting is to avoid small pivots and control
pivot growth in the factors. Dynamic pivoting is not the only means to achieve
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(1) Perform row/column equilibration and row permutation: A < P - Dy - A+ D,
where D, and D, are diagonal matrices and P, is a row permutation chosen
to make the diagonal large compared to the off-diagonal.

(2) Find a column permutation P to preserve sparsity: A « P.-A-PZI.

(3) Perform symbolic analysis to determine the nonzero structures of L and U.

(4) Factorize A = L - U with control of diagonal magnitude:

if (|asi| < /- [|All1 ) then
set ai; to v/ - ||Ally
endif
(5) Perform triangular solutions using L and U.
(6) If needed, use an iterative solver like GMRES or iterative refinement (shown below):

iterate:
r=b—A-x ... sparse matrix-vector multiply
Solve A -dx =1 ... triangular solution
berr = max; m ... componentwise backward error
if ( berr > ¢ and berr < é -lastberr ) then
T =2x+dr

lastberr = berr
goto iterate
endif
(7) If desired, estimate the condition number of A.

Fig. 1. The outline of the GESP algorithm.

this goal. We can use other algorithms to prepermute large elements on the
diagonal, thereby partially fulfilling the role of dynamic pivoting. Furthermore,
when large pivot growth still occurs, there are inexpensive methods to tolerate
and compensate for the growth, such as iterative methods preconditioned by the
computed LU factors, of which GMRES [Saad and Schultz 1986] and iterative
refinement are two examples. This observation led us to design a static pivoting
factorization algorithm, called GESP [Li and Demmel 1998]. We demonstrated
that GESP works well for practical matrices.

In our GESP algorithm, since pivots are chosen from the main diagonal,
the fill-in positions can be determined before the numerical factorization, and
so the symbolic factorization can be decoupled from numerical factorization.
This enables static data structure optimization, graph manipulation, and load
balancing in a similar way as parallel sparse Cholesky implementations.

Figure 1 sketches our GESP algorithm. To motivate step (1), recall that a
diagonally dominant matrix is one where each diagonal entry a;; is larger in
magnitude than the sum of magnitudes of the off-diagonal entries in its row
(3= lay]) or column (3 ;_; la;i|). It is known that choosing diagonal pivots en-
sures stability for such matrices [Demmel 1997; Golub and Van Loan 1996].
We therefore expect that if each diagonal entry can somehow be made larger
relative to the off-diagonals in its row or column, then diagonal pivoting will
be more stable. The purpose of step (1) is to choose the diagonal scaling matri-
ces D, and D., and the permutation P, to make each q;; larger in this sense.
We have experimented with a number of heuristic algorithms implemented in
the routine MC64 (available from HSL [HSL 2000]) [Duff and Koster 1999]. All
depend on the following graph representation of an n x n sparse matrix A: it
is represented as an undirected weighted bipartite graph with one vertex for
each row, one vertex for each column, and an edge with appropriate weight
connecting row vertex i to column vertex j for each nonzero entry a;;. Finding a

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.



114 o Li and Demmel

permutation P, that puts large entries on the diagonal can thus be transformed
into a weighted bipartite matching problem on this graph. In MC64, there are al-
gorithms that choose P, to maximize different properties of the diagonal of P, A,
such as the smallest magnitude of any diagonal entry, or the sum or product
of magnitudes. But the best algorithm in practice is the following (option 5 of
MC64): it chooses P, to maximize the product of the diagonal entries, and chooses
D, and D, simultaneously so that each diagonal entry of P.D,,AD, is +1, and
each off-diagonal entry is bounded by 1 in magnitude. The implementation is
based on the algorithm by Olshowka and Neumaier [1996]. We report results
for this algorithm only. The worst-case serial complexity of this algorithm is
O(n - nnz(A) - logn), where nnz(A) is the number of nonzeros in A. In practice
it is much faster; the actual timings appear later in Figure 7. In Section 5,
we describe the work of others who experimented with this idea in the sparse
direct and iterative solvers.

We note that the diagonal scalings D, and D, are needed in the algorithm
so that (1) the value of ||A||; in step (4) makes sense (see below) and (2) the
estimated condition number from step (7) is not overly pessimistic when the
rows and columns are badly scaled (i.e., D, and D, are far from multiplies of
the identity). Indeed, in the absence of over/underflow, as long as the diagonal
entries of D, and D, are chosen to be multiples of the radix (typically 2), and
no small pivots are encountered in step (4) (see below), then identical rounding
errors will be made in parts (4) through (6) of the algorithm whether or not D,
and D, are applied to A in step (1).

Step (2) is standard in sparse direct solvers. The column permutation P,
can be obtained from any fill-reducing heuristic. In our code, we provide the
minimum degree ordering algorithm [Liu 1985] on the structure of AT + A. The
code can also take as input an ordering based on some other algorithm, such as
the nested dissection on AT + A [George 1973; Hendrickson and Leland 1993;
Karypis and Kumar 1998]. Note that we also apply P, to the rows of A to ensure
that the large diagonal entries obtained from step (1) remain on the diagonal.

In step (4), we perform factorization using diagonal pivots. The tiny pivots
encountered during elimination can be set to 4/¢ - ||A||1, where ¢ is machine pre-
cision. This is equivalent to a small (half-precision) perturbation to the original
problem, and trades off some numerical stability for the ability to keep pivots
from getting too small.

In step (6), we perform a few steps of an iterative method like iterative re-
finement (shown) or GMRES [Saad and Schultz 1986] if the solution from step
(5) is not accurate enough. The termination criterion is based on the compo-
nentwise backward error berr [Arioli et al. 1989; Demmel 1997]. The condition
berr < ¢ means that the computed solution is the exact solution of a slightly
different sparse linear system (A + §A)x = b + b where §A changes only each
nonzero entry a;; by at most one unit in its last place, and the zero entries
are left unchanged; thus one can say that the answer is as accurate as the
data deserves. We terminate the iteration when the backward error berr is
smaller than machine epsilon, or when it does not decrease by at least a factor
of 2 compared with the previous iteration. The latter test is to avoid possible
stagnation. (Figure 5 shows that berr is always small.) Note that demanding
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Table I. Test Matrices and Their Disciplines

[ Discipline | Matrices |

Fluid flow, CFD AF23560, BBMAT, BRAMLEY1, BRAMLEY2, EX11, EX19, FIDAPO11,
FIDAP019, FIDAPM11, FIDAPM29, GARON2, GOODWIN, GRAHAM1,
INACCURA, INV-EXTRUSION-1, LNSP3937, LNS_3937, MIXING-TANK,
RAEFSKY3, RAEFSKY4, RMA10, VENKATO1, WU

Circuit simulation ADD32, GRE-1107, GRE_115, JPWH_991, MEMPLUS, ONETONE],
ONETONEZ2, TWOTONE

Device simulation ECL32, WANG3, WANG4

Chemical engineering EXTR1, HYDR1, LHRO1, LHR7 1C, RADFR1, RDIST1, RDIST2, RDIST3A,
WEST2021

Chemical process BAYERO1, BAYERO2, BAYER04

Petroleum engineering ORSREG_1, SAYLR4, SHERMAN3, SHERMAN4, SHERMANS

Finite element PDE Av4408, Av11924

MagnetoHydroDynamics MHD500

Stiff ODE FS_541.2

Olmstead flow model oLM5000

Aeroelasticity TOLS4000

Reservoir modelling PORES_2

Crystal growth simulation CcrY10000

Power flow modelling GEMAT11

Dielectric waveguide pw8192 (eigenproblem)

Astrophysics MCFE

Plasma physics uTtM5940

Demography PSMIGR_1, PSMIGR_2, PSMIGR_3

Economics MAHINDAS, ORANI6G78

Note: CFD = Computational fluid dynamics; PDE = partial differential equation; ODE = ordinary differential
equation.

berr < ¢ is very stringent and, in practice, the refinement can be terminated
earlier.

When a small diagonal is encountered and set to /¢ - ||A||1, this may cause
a large backward error in A, but this error is only large in norm, not in rank.
In other words, the difference between A and the product of the computed
factors L - U is small in rank. This makes the LU factorization an excellent
preconditioner of A for a method like GMRES, which (in the absence of roundoff)
takes no more steps to converge than the difference in rank between L - U and
A. This will be borne out in the experiments below.

2.1 Numerical Stability

In this subsection, we illustrate the numerical stability and runtime of our
GESP algorithm on 68 unsymmetric matrices drawn from a wide variety of
applications. The application domains of the matrices are given in Table I. Most
of them, except for wu, can be obtained from the Harwell-Boeing Collection [Duff
et al. 1992] and the collection of Davis [Davis n.d.]. Matrix wu was provided
by Yushu Wu from the Earth Sciences Division of Lawrence Berkeley National
Laboratory. Figure 2 plots the dimension, nnz(A), and nnz(L + U) (i.e., the fill-
ins, after the minimum degree ordering on AT + A). The matrices are sorted in
increasing order of the LU factorization time of the sequential GESP algorithm.

ACM Transactions on Mathematical Software, Vol. 29, No. 2, June 2003.



116 o Li and Demmel

+ #of nonzerosin A
O # of nonzeros in L+U

+ 4 ©

0 10
LU factorization time in seconds

L
-2

10 ?

Fig. 2. Characteristics of the matrices.

The matrices of most interest for parallelization are the ones that take the most
time, that is, the ones toward the right of the graph in Figure 2. It is clear that
the matrices with larger numbers of nonzeros require more time to factorize.
The timing results reported in this subsection are obtained on a single IBM 375-
MHz POWERS processor, running the AIX operating system. The processor has
a 64-kB L1 data cache and an 8-MB L2 cache.

Detailed performance results from this section in tabular format are avail-
able at http://www.nersc.gov/~xiaoye/SuperLU/GESP.

As shown in Figure 1, our algorithm can be used in many “configurations”:

—We may or may not perform step (1).
—One of many ordering schemes (nested dissection, minimum degree, etc.) may
be used in step (2).

—We may or may not replace tiny pivots with /¢ - ||A||; in step (4).
— We may apply several kinds of iteration (or none at all) in step (6).

In this section we report on several configurations of the algorithm. First,
Figures 3 through 7 show data for the algorithm as shown in Figure 1, including
the iterative refinement in step (6), which is often the fastest configuration.
However, for a few matrices (see below) to get a stable solution it was important
not to replace tiny pivots in step (4) (for other matrices it was important to
replace tiny pivots as in step (4), and for most matrices it did not matter). So
the data in Figures 3 through 7 actually reflects two possible configurations,
depending on the matrix (replacing tiny pivots in step (4) or not).

Second, we ran all the matrices with the same configuration of the algorithm,
in which restarted GMRES was used in step (6). All matrices were solved stably
in this configuration, though it was sometimes slower than iterative refinement.

For the data reported in this section, we use minimum degree ordering on
the structure of AT + A.
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Now we consider the first configuration, when iterative refinement was used.
Among the 68 matrices, many would get wrong answers or fail completely (via
division by a zero pivot) without any pivoting or other precautions. In 26 of
these matrices, some of the zeros present in the initial diagonal would continue
to remain zero during elimination, and in another group of two matrices (bbmat
and orsreg_1), new zeros would be created on the diagonal during elimination.
Therefore, not pivoting at all would fail completely on these 29 matrices. For our
experiment, the right-hand-side vector is generated so that the true solution
X#rue 18 @ vector of all 1s. IEEE double precision is used as the working precision,
with ¢ ~ 10716, All the test matrices have condition numbers bounded by %
Figure 3 shows the number of iterations taken in the iterative refinement step.

The termination criteria is that the backward error berr = max; m <g
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or berr does not decrease by one-half of the previous step. For most matrices, the
iteration terminates with no more than three steps: 9 matrices require one step,
46 matrices require two steps, 5 matrices require three steps, and 8 matrices
require more than three steps. In the case of conventional Gaussian elimination
with partial pivoting (GEPP) (as in sequential SuperLU), 4 matrices require one
step, 63 matrices require two steps, and 1 matrix requires three steps.

For each matrix, we present two error metrics, in Figures 4 and 5, respec-
tively, to assess the accuracy and stability of GESP. Figure 4 plots the error
from GESP versus the error from GEPP for each matrix: a dot on the diagonal
means the two errors were the same, a dot below the diagonal means GESP
is more accurate, and a dot above the diagonal means GEPP is more accurate.
Figure 4 shows that the error of GESP is at most a little larger, and can be
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smaller (36 out of 68 matrices), than the error from GEPP. Figure 5 shows that
the componentwise backward error [Demmel 1997] is also small, usually near
¢ and never larger than 10713,

Figure 6 compares the pivot growth of GESP versus that of GEPP. Here,
the pivot growth is defined as ““Z“l':j. For 31 matrices, GESP and GEPP have
comparable pivot growth. For 10 matrices, GESP has more than 10 orders of
magnitude larger pivot growth than GEPP, up to 10?*. Even in the presence
of such large pivot growth, the iterative refinement can effectively recover any
loss of accuracy during the factorization.

Note that Figure 1 shows all the techniques that are implemented in the
code. Some may not be needed for some problems. Our experiment shows
that the half-precision perturbation introduced in step (4) is not needed for
most matrices. It is necessary for five matrices (FIpDAPM11, GOODWIN, GRAHAM],
INV-EXTRUSION-1, and MIXING-TANK), but is bad for four others (gx11, rFipap011,
INACCURA, and RAEFSKY4). The rest of the matrices are insensitive to this option,
because either no tiny pivots occur or it does not matter what you do. There-
fore, in our code, we provide a flexible interface so the user is able to turn on
or off any of these options (steps (1), (2), (6), and the diagonal perturbation in
step (4)).

Now we turn to the second configuration of our algorithm, in which restarted
GMRES [Saad and Schultz 1986] was used in step (6) (we used the version from
SPARSKIT [Saad n.d.]). The restart value is 50. Here, our LU factorization is
used in preconditioning for GMRES. The convergence test is based on residual
norm ||r;||g < rtol * ||ro||2 + atol, where the relative tolerance rtol and absolute
tolerance atol are 10~ and 10719, respectively. For the four “bad” matrices above
(Ex11, FipAPO11, INACCURA, and RAEFSKY4), GMRES takes 497, 530, 5, and 41
iterations to converge. The number of tiny pivots replaced in step (4) for these
four matrices was 8666, 8602, 3, and 51, respectively. For most of the other
matrices, GMRES terminates within two iterations. This shows that with one
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parameter setting, we can solve all the test problems accurately. In the software,
we plan to provide an interface to the user with the options of using various
iterative schemes.

We now evaluate the runtime of each step of GESP in Figure 1, in our first
configuration with iterative refinement in step (6). This is done with respect to
the sequential runtime. For large enough matrices, the LU factorization in step
(4) dominates all the other steps, so we will measure the time of each step with
respect to step (4).

Both row and column permutation algorithms in steps (1) and (2) (computing
P, and P,) are not easy to parallelize (their parallelization is future work).
Fortunately, their memory requirement is just O(nnz(A)) [Davis et al. 2000;
Duff and Koster 1999], as opposed to the superlinear memory requirement for
L and U factors, so in the meantime we can run the ordering algorithms on a
single processor.

Figure 7 shows the times spent in the other steps of GESP as the fraction of
the sequential time for the factorization step. The times are significant for the
small problems, but drop to smaller fractions as the problems become larger.
Only the large matrices are of interest for parallel machines and are also the
ones which SuperLU DIST was designed for.

We note that we have developed a theoretical algorithm that provides a guar-
antee of stability while using static pivoting, by using variable precision. The
purpose of this is to show that even if some “dynamic” (i.e., matrix-dependent)
algorithm were required to absolutely guarantee stability, then the dynamic
part could involve variable precision as opposed to communication patterns
and layout. We note that even conventional partial pivoting does not absolutely
guarantee stability, because exponential pivot growth is still possible, albeit
very unlikely. It is a risk most users can live with, as we suggest is also the
case for static pivoting. The details of this theoretical algorithm may be found
in Appendix A of Li and Demmel [2002].

2.2 Opportunities for Better Fill-Reducing Orderings

For the unsymmetric factorizations, the preordering for sparsity is less well
understood than that for the Cholesky factorization. Most unsymmetric order-
ing methods use the symmetric ordering techniques on a symmetrized matrix
(e.g., AT A). Now we examine the structural relationships of several matrices,
and describe the rationale behind the above ordering methods. Consider the
LU factorization with partial pivoting P,A = LU, where P, is a permutation
matrix describing row interchanges. Also consider the Cholesky factorization
ATA = RTR, and the QR factorization A = QR computed by the House-
holder transformation.! @ is represented by the “Householder matrix” H whose
columns are the Householder vectors. The nonzero structure for L and U can-
not be predicted immediately from the nonzero structure of A, because the row
interchanges during the factorization depend on the numerical values. How-
ever, for any row interchanges, the structures of L and U are subsets of the
structures of H (or RT) and R, respectively [George et al. 1988; George and

IThe R factor in the Cholesky factorization and the R factor in the QR factorization are identical.
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Table II. Impact of Different Ordering Methods on the Size
of the Factors; the GESP Algorithm is Used

Nonzeros in L + U (10°)
(AT A)—based (AT 4+ A)-based
Matrix MMD | COLAM || MMD AMD
BBMAT 49.1 49.8 41.1 40.2
ECL32 73.5 72.6 42.4 42.7
FIDAPM11 26.4 24.3 24.8 24.8
INV-EXTRUSION-1 53.7 62.7 29.1 28.4
MIXING-TANK 86.9 814 40.7 41.2
RMA 14.7 16.3 9.3 9.3
TWOTONE 22.6 18.3 114 11.9
WANG4 27.7 25.5 10.5 10.7

Ng 1987]. Therefore, a good symmetric ordering P, on AT A (either based on
minimum degree or nested dissection) that preserves the sparsity of R can be
applied to the columns of A, forming APCT, so that the LU factorization of the
column-permuted matrix APCT is sparser than that of the original matrix A.
This is due to the relation P,(ATA)PT = (APT)T(APT). A drawback with the
above approach is that computing the structure of AT A can be expensive both
in time and space since A” A may be much denser than A. Davis et al. [2000]
developed an algorithm, called COLAMD (for “Column approximate minimum
degree”), to compute P, directly from the sparsity structure of A. It is based
on the same strategy, that is, to make the “upper bound” matrices H and R
sparser, but uses better heuristics. Both serial SuperLU and SuperLU_MT have
incorporated both column ordering methods; that is, the user can choose to ob-
tain a column ordering by calling multiple minimum defgree (MMD) [Liu 1985]
on AT A, or by calling COLAMD.

Since the “AT A-based ordering” methods attempt to account for all possi-
ble row interchanges, such ordering may be too generous when only a limited
amount of pivoting is needed. This is especially true for our GESP algorithm,
in which the row interchanges are performed prior to the factorization. During
the factorization, the pivots are chosen solely on the main diagonal. A better
fill-reducing ordering would be based on the symmetric matrix AT + A, instead
of AT A, because the symbolic Cholesky factor of AT + A is a much tighter upper
bound on the structures of L and U than that of AT A. Note that in this case, we
perform a symmetric permutation PAPT so that the entries of the main diago-
nal of the permuted matrix remain the same as those in the original matrix A.
Table II lists the amount of fill in the LU factorization using different ordering
methods. It is clear that the orderings based on AT + A is much better than
those based on AT A. Sometimes the improvement can be more than a factor of
2; see matrices INV-EXTRUSION-1, MIXING-TANK, and waNG4. The only exception is
FIDAPM11, for which the three ordering methods are comparable.

Although the (AT + A)-based orderings improve the ordering quality, they
still may not be the most effective fill-reducing methods, since symmetrization
AT 4+ A may destroy the sparsity of matrix A, particularly when A is highly un-
symmetric. Recently, motivated by the GESP algorithm and an unsymmetrized
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multifrontal method [Amestoy and Puglisi 2002], Amestoy, Li and Ng [Amestoy
et al. 2003] proposed a new symmetric ordering scheme that does not require
any symmetrization of the underlying matrix, that is, it works directly on ma-
trix A itself. The scheme is similar to the Markowitz [1957] scheme, but limits
the pivot search to the entries on the main diagonal. The efficient implementa-
tion is similar to that of approximate minimum degree (AMD) [Amestoy et al.
1996], but it generalizes the (symmetric) quotient graph to the bipartite quo-
tient graph to model the unsymmetric node elimination. The preliminary re-
sults show that the new ordering method reduces the amount of fill by 10% on
average for very unsymmetric matrices, when compared with applying AMD
to AT + A. In the future, we will incorporate this new ordering algorithm into
SuperLU_DIST.

The better choice of sparsity ordering algorithm is indeed an added benefit
of the GESP algorithm over GEPP. Throughout the paper, we only report the
results using the ordering algorithms based on AT + A.

3. PARALLEL ALGORITHMS

In this section, we describe our design, implementation, and the performance of
the distributed algorithms for two major steps of the GESP method: sparse LU
factorization (step (4)) and sparse triangular solve (step (5)). Our implementa-
tion uses the Message Passage Interface (MPI) [MPI n.d.] to communicate data.
We have tested the code on a number of platforms, such as Cray T3E, IBM SP,
and Berkeley NOW.

3.1 Matrix to Processor Mapping and Distributed Data Structure

We distribute the matrix in a two-dimensional block-cyclic fashion. In this
distribution, the P processes are arranged as a 2D process grid of shape
nprow X npcol. The matrix is partitioned into blocks of submatrices. The block
definition is based on the notion of unsymmetric supernode first introduced
in Demmel et al. [1999a]; it is defined over the matrix factor L. A supernode is
arange (r : s) of columns of L with the triangular block just below the diagonal
being full, and the same nonzero structure elsewhere (either full or zero). This
supernode partition is used as the block partition in both row and column di-
mensions; that is, the diagonal blocks are square. If there are N supernodes in
an n-by-n matrix, the matrix will be partitioned into N2 blocks of nonuniform
size. The size of each block is matrix dependent. The off-diagonal blocks may
be rectangular and need not be full. Furthermore, the columns in a block of U
do not necessarily have the same row structure. We call a dense subcolumn in
a block of U a segment. By block-cyclic layout, we mean block (I, /) is mapped
onto the process at coordinate (I — 1) mod nprow, (J — 1) mod npcol) of the
process grid. During factorization, block L(I, J) is only needed by the processes
on the process row ((I — 1) mod nprow), thus restricting the communication.
Similarly, block U(I, JJ) is only needed by the processes on the process column
((J — 1) mod npcol). Figure 8 illustrates such a 2D block-cyclic layout.
Although a 1D partition is more natural to sparse matrices and is much
easier to implement, a 2D layout strikes a good balance among locality
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Fig. 8. The 2D block-cyclic layout and the data structure to store a local block column of L.

(by blocking), load balance (by cyclic mapping), and lower communication vol-
ume (by 2D mapping). 2D layouts have been demonstrated to be more scalable
in the implementations for dense matrices [Blackford et al. 1997] and sparse
Cholesky factorization [Gupta and Kumar 1995; Rothberg 1996].

We now describe the distributed data structures to store local submatrices.
In the 2D blocking, each block column of L resides on more than one process,
namely, a column of processes. For example, in Figure 8, the second block column
of L resides on the column processes {1, 4}. Process 1 only owns two nonzero
blocks, which are not contiguous in the global matrix. The schema on the right
of Figure 8 depicts the data structure to store the nonzero blocks on a process.
Besides the numerical values stored in a Fortran-style array nzval [] in column-
major order, we need the information to interpret the location and row subscript
of each nonzero. This is stored in an integer array index[], which includes the
indices for the whole block column and for each individual block in it. The
zero blocks are not stored; neither do we store the zeros in a nonzero block.
Both lower and upper triangles of the diagonal block are stored in the L data
structure. A process owns [N /npcol] block columns of L, so it needs [N /npcol]
pairs of index/nzval arrays.

For matrix U, we use a row-oriented storage for the block rows owned by
a process, although for the numerical values within each block we still use
column-major order. Similarly to L, we also use a pair of index/nzval arrays
to store a block row of U. Due to asymmetry, each nonzero block in U has the
skyline structure as shown in Figure 8 (see Demmel et al. [1999a] for details
on the skyline structure). Therefore, the organization of the index[] array is
different from that of L, which we omit showing in the figure.

The user can control the partitioning and mapping. First, the user can set the
maximum block size parameter. The symbolic factorization algorithm identifies
supernodes, and chops the large supernodes into smaller ones if their sizes
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Fig. 9. Illustration of the numerical kernels used in SuperLU_DIST.

exceed this parameter. The supernodes may be smaller than this parameter due
to sparsity, and the blocks are then defined by the supernode boundaries. (That
is, supernodes can be smaller than the maximum block size but never larger.)
Our experience has shown that a good value for this parameter on the IBM SP2
is around 40, while on the Cray T3E it is around 24, because T3E has smaller
caches on each processor. Second, the user can set the shape of the process grid,
such as 2 x 3 or 3 x 2. Better performance is obtained when the process row
dimension is kept slightly smaller than the process column dimension. Since we
do no dynamic pivoting, block partitioning and the setup of the data structure
can all be performed in the symbolic algorithm. This is much cheaper to execute
as opposed to partial pivoting, where the size of the data structure cannot
be forecast and must be determined on the fly as factorization proceeds.

3.2 Numerical Kernel Based on Level 3 BLAS

The main numerical kernel during the factorization is a block update corre-
sponding to the rank-k update to the Schur complement:

Al,J) <« Al,J)—L(U,K)x UK, J);

see Figure 9. In earlier versions of SuperLU, this computation was based on
Level 2.5 basic linear algebra subroutines (BLAS). That is, we call the Level
2 BLAS routine GEMV (matrix-vector product) but with multiple vectors (seg-
ments), and the matrix L(I, K) is kept in cache across these multiple calls. This
to some extent mimics the Level 3 BLAS GEMM (matrix-matrix product) perfor-
mance. However, the difference between Level 2.5 and Level 3 is still quite large
on many machines, for example, the IBM SP2. This motivated us to modify the
kernel in the following way in order to use Level 3 BLAS. For best performance,
we distinguish two cases corresponding to the two shapes of a U(K, /) block.

—The segments in U(K, J) are of same height, as shown in Figure 9 (a). Since
the nonzero segments are stored contiguously in memory, we can call GEMM
directly, without performing operations on any zeros.

—The segmentsin U (K, J)are of different heights, as shown in Figure 9 (b). In
this case, we first copy the segments into a temporary working array T, with
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some leading zeros padded if necessary. We then call GEMM using L(I, K)
and T (instead of U(K, J)). We perform some extra floating-point operations
for those padding zeros. The copying itself does not incur a runtime cost,
because the data must be loaded in the cache anyway. The working storage
T is bounded by the maximum block size, which is a tunable parameter. For
example, we usually use 40 x 40 on the IBM SP2 and 24 x 24 on the Cray T3E.

Compared with the Level 2.5 BLAS kernel, this Level 3 BLAS kernel im-
proved the uniprocessor factorization time by about 20% to 40% on the IBM
SP2. A performance gain was also observed on the Cray T3E. It is clear that
the extra operations are well offset by the benefit of the more efficient Level 3
BLAS routines.

3.3 Parallel Factorization with Pipelining

In this subsection, we first describe in detail how the parallel factorization
algorithm utilizes the pipeline effect. Then we discuss how to improve the per-
formance robustness by introducing immediate sends and receives. The follow-
ing notation will be used in Figure 11 and throughout the discussion. MATLAB
notation is used for integer ranges and submatrices.

—Process IDs
—PROC.(K): the set of column processes that own block column K.
For example, in Figure 8, PROC.(3) = PROC.(6) = {2, 5}.
—PROC,(K): the set of row processes that own block row K.
For example, in Figure 8, PROC,(1) = PROC,(3) = {0, 1, 2}.
— P = PROC.(K)NPROC,(K).
—me: the process rank as illustrated in Figure 8.
—Tasks labelled in Figure 11
—F (...): Factorize a block column or a block row?
—S (...): Send a block column or a block row
—R (...): Receive a block column or a block row
—U®(...): Update the trailing submatrix using L(:, K) and U(K, :)

The parallel sparse LU factorization algorithm is right-looking and loosely
synchronous, as shown in Figure 10. It loops over the number of supernodes. The
K th iteration of the loop consists of three steps: (1) the process set PROC.(K)
factors the block column L(K : N, K); (2) the process set PROC,(K) factors
the block row U(K, K + 1 : N); and (3) all the processes perform the Schur
complement update by L(K + 1 : N,K) and U(K,K + 1 : N). The last step
represents most of the work and also exhibits more parallelism than the other
two steps.

In the actual implementation we use a pipelined organization so that pro-
cesses PROC. (K + 1) will start step (1) of iteration K + 1 as soon as the rank-&
update (step (3)) of iteration K to block column K +1 finishes, before completing
the update to the trailing matrix A(K+1 : N, K+2 : N)owned by PROC.(K +1).

2There is also communication involved in this task, but it is negligible, and so is omitted in the
discussion.
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for block K =1 to N do
(1) if [ me € PROC¢(K) ] then
Factorize block column L(K : N, K)
Send L(K : N, K) to the processes in my row who need it
else
Receive L(K : N, K) from one process in PROC¢(K)
endif
(2) if [ me € PROCR(K) | then
Factorize block row U(K, K +1: N)
Send U(K, K +1: N) to processes in my column who need it
else
Receive U(K, K +1: N) from one process in PROCRg(K) if I need it
endif
(3) for J =K +1 to N do
for I =K +1to N do
if [ me € PROCRg(I) and me € PROCc¢(J)
and L(I,K) # 0 and U(K, J) # 0 ] then
Update trailing submatrix A(I,J) < A(I,J) — L(I,K)-U(K,J)
endif

end for

Fig. 10. The parallel right-looking LU factorization.
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Fig. 11. Ilustration of the pipeline at steps K and K + 1 during the SuperLU factorization.

Figure 11 illustrates this idea using Steps K and K + 1 of the algorithm. In
the figure, we show the activities of the four process groups along the time line.
The path marked with the dashed line represents the critical path, that is, the
parallel runtime can be reduced only if the critical path is shortened. The block
factorization tasks “F (...)” are usually on the critical path, whereas the up-
date tasks “U (...)” are often overlapped with the other tasks. There is lack of
parallelism for the “F (...)” tasks in Steps (1) and (2), because only one set of
column processes or row processes participate in these tasks. This pipelining
mechanism alleviates this problem. For instance, on 64 processors of the Cray
T3E, we observed speedups of between 10% and 40% over the nonpipelined
implementation as in Figure 10.
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In an earlier version of the code, we used mpi’s standard send and receive
operations mpi_send and mpi_recv for the message transfer tasks “S (...)” and
“R(...).” InFigure 11, we see idle time (longer send) during the sending of “S (L(:
, K + 1))” for process Pk .1 on the critical path. This can happen if the sender
and receiver are required to handshake before proceeding, as is the case with
large messages that exceed the MPI internal buffer size [Amestoy et al. 2001b].
That is, process Px 1 posts mpi_send long before processes PROC, (K) post the
matching mpi_recv, and the sender must be blocked to wait for mpi_recv. To
avoid this synchronization cost, we introduced the nonblocking send and receive
primitives, mpi_isend and mpi_irecv as follows:

—For the sender, we simply replace mpi_send by mpi_isend. This could eliminate
the idle time during the send “S (L(;, K + 1))” shown in Figure 11.

—For the receiver, we will post mpi_irecv much earlier than we actually need
the data. For example, for processes PROC,(K) in Figure 11, we could post
“R (L(:, K + 1))” before “U (A(K +1: N,K +1: N)).” That is, as soon as we
have received a message using mpi_wait, we will post the mpi_irecv for the
next message, before performing the local computation with the just-arrived
message.

To implement this idea, we need to provide user-level buffer space to ac-
commodate the messages in transit. Since for each process, there is only one
outstanding message to be received, we only need one extra buffer. Figure 12
sketches the pipelining algorithm using mpi_isend and mpi_irecv. The main
difference from Figure 10 is in step (3). In the new algorithm, the original step
(3) is split into two substeps (3.1) and (3.2). Step (3.1) implements a look-ahead
scheme. Here, we only update the (K + 1)st block column, then immediately
factorize this column and post send and receive of the factorized column for the
(K + 1)st iteration of the loop. This message transfer will overlap with the rest
of the trailing submatrix update appearing in step (3.2). In step (1), the pro-
cesses wait for the posted send and receive to complete. In particular, mpi_wait
in line 9 is matched with the posted mpi_isend in line 23 (and 3); mpi_wait in
line 11 is matched with the posted mpi_irecv in line 25 (and 5).

We observed a big performance difference between the blocking and non-
blocking versions of the codes on the Cray T3E. With an increasing number of
processors, the message size is usually decreasing. We show this in Table III,
because the smaller message size implies that there is less handshaking be-
tween the sender and receiver in the blocking code. Thus, the performance gain
of the nonblocking code on a large number of processors is less dramatic than
that on a smaller number of processors. The largest performance gain occurs
at four processors, where the nonblocking code is almost twice as fast as the
blocking code.

3.4 Parallel Triangular Solution

The sparse triangular solves are also designed around the same distributed
data structure (i.e., there is no data redistribution). bThe forward substitution
proceeds from the bottom of the elimination tree (etree of A” + A) to the root,
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/* —- Set up the initial stage for the pipeline — */
1. if [ me € PROC.(1) ] then
2. Factorize block column L(1: N, 1)
3. Post send L(1: N, 1) to the processes in my row who need it (— mpi-isend — )
4. else
5. Post receive L(1 : N, 1) from one process in PROC.(1) if I need it (- mpi_irecv —)
6. endif

/* —- Main pipeline loop — */
7. for block K =1 to N do
8. (1) if [ me € PROC(K) | then
9. Wait for the posted send of L(K : N, K) to complete (— mpi-wait — )
10. else
11. Wait for the posted receive of L(K : N, K) to complete (— mpi-wait — )
12. endif
13. (2) if [ me € PROC,(K) ] then
14. Factorize block row U(K,K +1: N)
15. Send U(K, K +1: N) to processes in my column who need it
16. else
17. Receive U(K,K + 1 : N) from one process in PROC,(K) (if I need it)
18. endif
19. (3.1) if [ K+ 1 < N | then

/* —- Factor-ahead scheme — */

20. if [ me € PROC(K + 1) | then
21. Update (K + 1)-st column A(:;, K +1) «+ A(:,K+1)—L(:,K)-U(K,K + 1)
22. Factorize block column L(:, K + 1)
23. Post send L(:, K + 1) to the processes in my row who need it (- mpi_isend — )
24. else
25. Post receive L(:, K + 1) from one process in PROC.(K + 1) (- mpi-irecv — )
26. endif
27. endif
28. (3.2) for J = K + 2 to N do
29. for ] = K+ 1to N do
30. if [ me € PROC,(I) and me € PROC.(J)
31. and L(I,K) # 0 and U(K,J) #0 ] then
32. Update trailing submatrix A(I,J) < A(I,J) — L(I,K)-U(K,J)
33. endif
34. end for
35. end for
36. end for

Fig. 12. Parallel LU factorization with nonblocking send and receive.

Table ITII. Maximum Size of the Message (in Mbytes) During the

Factorization
Number of processors
Matrix Ordering 4 8 16 32 64
BBMAT AMD 0.19 | 0.18 | 0.09 | 0.09 | 0.05
ECL32 AMD 0.32 | 0.32 | 0.16 | 0.16 | 0.09
INV-EXTRUSION-1 AMD 024 | 0.24 | 0.12 | 0.12 | 0.07
MIXING-TANK AMD 032 | 0.33 | 0.17 | 0.16 | 0.09

whereas the back substitution proceeds from the root to the bottom. Figure 13
outlines the algorithm for sparse lower triangular solve. The algorithm is based
on a sequential “inner-product” formulation. In this formulation, before we solve
for the K th subvector x(K ), the update from the inner-product of L(K,1: K —1)
and x(1 : K — 1) must be accumulated and then subtracted from b(K). The di-
agonal process, at the coordinate (K mod nprow, K mod npcol) of the process
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1. Let mycol (myrow) be my process column (row) coordinate in the process grid
2. x =b; lsum=0
/* — Compute leaf nodes — */
3. for block K =1to N
4 if ( myrow = (K mod nprow) and mycol = (K mod npcol) and frecv[K]=10)
5. @(K) = L(K, K)~! - a(K)
6 Send z(K) to the column processes PROC¢(K)
7 endif
8. end for
/* — Compute internal nodes — */
9. while ( I have more work ) do
10. Receive a message
11. if ( message is z(K) )
12. for each of my L(I,K) # 0,1 > K
13. lsum(I) = lsum(I) + L(I, K) - z(K)
14. fmod(I) = fmod(I) — 1
15. if ( frmod(I) =0)
16. Send lsum(I) to the diagonal process that holds z(I)
17. endif
18. end for
19. else if ( message is lsum(K) )
20. z(K) = z(K) — lsum(K);
21. frecv(K) = frecv(K) —1
22. if ( frecv(K)=0)
23. z(K) = L(K,K)™! - 2(K)
24. Send z(K) to the column processes PROC¢(K)
25. endif
26. endif
27. end while

Fig. 13. Parallel lower triangular solve L - x = b.

grid, is responsible for solving for x(K). Since each block row L(K,1: K — 1) is
distributed among the row process set PROCg(K ), the inner-product is formed
in a distributed way. Each process stores the partial sum in lsum(K) locally.
After it accumulates all the product contributions from various blocks, it sends
the partial sum to the diagonal process that holds x(X). This is like a reduction
operation among a row process set, except that some processes may not partic-
ipate in this reduction if they do not have any nonzero block in this block row.
Two counters, frecv and fimod, are used to facilitate the asynchronous execution
of different operations. fmod(K ) counts the number of local block products to be
summed into Isum(K). When fmod(K) becomes zero, the partial sum Isum(K)
is sent to the owner of x(K). frecv[K] counts the number of process updates to
x(K) to be received by the owner of x(K). This is needed because, due to spar-
sity, not all processes in PROCr(K ) contribute to the update. When frecv(K)
becomes zero, all the needed inner-product updates to x(K) are complete and
x(K) can then be solved.

The execution of the program is message-driven. A process may receive two
types of messages: one is the partial sum lsum(K), another is the solution sub-
vector x(K). Appropriate action is taken according to the message type. The
asynchronous communication enables large overlapping between communica-
tion and computation. This is very important because the communication to
computation ratio is much higher in triangular solve than in factorization.
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Table IV. Characteristics of the Large Matrices (N-Sym is the fraction of nonzeros matched
by equal values in symmetric locations. S-Sym is the fraction of nonzeros matched by
nonzeros in symmetric locations)

MC64 nnz(L+U) | Flops
Order nnz(A) N-Sym | S-Sym | S-Sym (10%) (10%)
BBMAT 38744 | 1771722 0.02 0.54 0.50 41.1 34.0
ECL32 51993 380415 0.66 0.93 0.93 424 68.3
INV-EXTRUSION-1 30412 | 1793881 0.73 0.97 0.86 28.4 28.0
MIXING-TANK 29957 | 1995041 0.98 1.00 0.91 41.2 64.6
TWOTONE 120750 | 1224224 0.14 0.28 0.43 11.9 8.0
WANG4 26068 177196 0.19 1.00 1.00 10.7 9.1

Table V. Factorization Time (in Seconds) on the Cray T3E (“—” indicates not enough memory.
The best time is indicated in boldface. Note: MC64 is needed only by TwoToNE, and the time is
1.6 seconds)

Symb Number of processors

Matrix Ord. Time 1 2x2 4x4 | 4x8 | 8x8 | 8x16 | 8x32 | 16x32
BBMAT AMD 4.6 — 64.7 | 21.3 | 12.8 | 9.2 7.2 | 6.7 6.8

ND 6.3 — 11329 (398|235 | 156 | 11.1 | 99 9.6
ECL32 AMD 6.0 — 1 106.8 | 31.2 | 18.3 | 12.3 8.2 | 6.8 6.5

ND 3.9 — 485 | 157 | 96| 7.6 56 | 5.7 6.1
INV-EXTRUSION-1 | ND 2.4 68.2 | 21.3| 82| 56| 4.9 3.7 35 3.8
MIXING-TANK ND 2.5 88.1 25.2 8.6 5.6 4.6 3.1 3.1 3.1
TWOTONE MC64+

AMD 3.2 — | 103.8 | 32.8 | 19.5 | 13.3 9.7 | 7.6 9.0
WANG4 AMD 1.3 57.0 178 | 68| 48| 4.3 34 | 3.1 3.7

The algorithm for the upper triangular solve is similar, However, because of
the row-oriented storage scheme used for matrix U, there is a slight complica-
tion in the actual implementation. Namely, we have to build two vertical linked
lists to enable rapid access of the matrix entries in a block column of U'.

4. PARALLEL PERFORMANCE AND SCALABILITY

In this section, we restrict our attention to several large matrices selected from
our testbed in Table I, because only large problems need to use parallel ma-
chines. These matrices are representative of different application domains. The
characteristics of these matrices are given in Table IV. The configuration of the
GESP algorithm includes steps (2) to (5) in Figure 1, and iterative refinement in
step (6). Only TWOTONE requires step (1). The timing results have been obtained
on the Cray T3E-900 (512 450-MHz EV-5 processors, 256 Mbytes of memory
per processor, 900 peak Megaflop rate per processor) installed at NERSC.

4.1 Factorization

We show in Table V the factorization time of SuperLU DIST. The symbolic anal-
ysis is not yet parallel. Although it takes very little time, its parallelization
would enhance memory scalability, and will be our future work. There is an
on-going work by Riedy [2003] on parallel bipartite matching algorithm. We
will use it in place of MC64 in the future. For now, we start with a copy of the
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Table VI. Maximum Size of the Messages (Max in Mbytes), Average Volume of Communication
(Vol in Mbytes), and Number of Messages per Processor (Mes)

Number of processors

2x2 4x4 8x8
Matrix Ord. | Max Vol Mes Max Vol Mes Max Vol Mes
BBMAT AMD | 0.18 81 23412 | 0.09 61 34176 | 0.05 35 35035
ND 0.17 82 30698 | 0.09 62 45598 | 0.04 36 50925
ECL32 AMD | 0.32 90 27437 | 0.16 67 37486 | 0.09 39 34981

ND 0.25 56 28966 | 0.13 42 41172 | 0.07 24 41271
INV-EXTRUSION-1 ND 0.15 31 17774 | 0.08 23 25824 | 0.05 13 27123

MIXING-TANK ND 0.19 40 13667 | 0.11 30 19635 | 0.05 18 19064
TWOTONE MC64+

AMD | 0.26 27 120006 | 0.15 20 153995 | 0.05 11 104906
WANG4 AMD | 0.19 24 27728 | 0.10 18 34495 | 0.05 10 27561

entire matrix on each processor, and run steps (1) through (3) independently
on each processor. The third column of Table V reports the time spent in the
symbolic analysis. The memory requirement of the symbolic analysis is small,
because we only store and manipulate the supernodal graph of L and the skele-
ton graph of U, which are much smaller than the graphs of L and U. (In the
skeleton graph of U, only the first nonzero in a segment of U is stored.) The
subsequent columns in the table show the numerical factorization time with
a varying number of processors. For all these matrices, the algorithm can effi-
ciently use 128 processors. Beyond 128 processors, not all matrices can benefit
from the additional processor power. Only BBMAT with ND ordering [Karypis
and Kumar 1998] and EcL32 with AMD [Amestoy et al. 1996] can benefit from
using 512 processors. Our lack of other large unsymmetric systems gives us few
data points in this regime. To further analyze the scalability of our solvers, we
consider three-dimensional regular grid problems in Section 4.4.

We also observe that the algorithm does not always fully benefit from the
reduction in the number of operations potentially available from the use of
a nested dissection ordering (see BBMAT). There are several reasons, and the
improvement remains as future work. First, the algorithm does not fully exploit
the parallelism of the elimination dags. Second, the pipelining mechanism does
not fully benefit from the sparsity of the factors (a blocked column factorization
should be implemented). This also explains why it does not fully benefit from
the better balanced tree generated by a nested dissection ordering.

To better understand the performance, we show in Table VI the average
communication volume. The speed of communication can depend very much on
the number and the size of the messages, and we also indicate the maximum
size of the messages and the average number of messages per processor. With
an increasing number of processors, the communication volume and the size of
the messages usually decrease, whereas the total number of messages usually
increase. This implies that on larger numbers of processors, it is important to be
able to overlap the computation with communication of many small messages.
Our use of nonblocking sends and receives in the loosely synchronous pipelining
algorithm facilitates this.
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Table VII. Solve Time (in Seconds) on the Cray T3E (“+IR” shows the time spent improving the

initial solution using iterative refinement. “—” indicates not enough memory. The best time is
indicated in boldface)
IR Number of processors

Matrix Ord. | (Steps) 1 2x2 | 4x4 | 4x8 | 8x8 | 8x16 | 8x32 | 16x32
BBMAT AMD no — 1.39 | 0.78 | 0.75 | 0.49 | 0.50 | 0.40 0.38
IR (3) — 5.00 | 2.84 | 269 | 1.88 | 1.74 1.44 1.38

ND no — [ 2.01]1.03]0.89 | 0.65 | 0.60 | 0.57 0.43

IR (3) — 6.86 | 3.66 | 3.19 | 2.44 | 2.11 1.97 1.58

ECL32 AMD no — 1.87 | 1.09 | 1.09 | 0.68 | 0.73 | 0.50 0.51
IR (2) — | 4.17 | 266 | 254 | 1.66 | 1.68 | 1.19 1.22

ND no — 149 | 095 | 0.95 | 0.64 | 0.64 | 0.47 0.43

IR (2) — | 337|247 | 225|163 | 1.51 | 1.13 1.08

INV-EXTRUSION-1 ND no 1.50 | 0.73 | 0.43 | 0.39 | 0.29 | 0.27 | 0.22 0.19
IR(3) | 6.19 | 2.77 | 1.65 | 1.51 | 1.16 | 1.00 | 0.85 0.75

MIXING-TANK ND no 1.54 | 0.64 | 0.35 | 0.31 | 0.21 | 0.22 | 0.17 0.15
IR(3) | 6.46 | 2.56 | 1.42 | 1.25 | 0.92 | 0.85 | 0.69 0.64

TWOTONE MC64+ no — [ 263|193 | 184|128 | 1.24 | 0.93 0.85
AMD | IR(3) — 1 9.00 | 6.95 | 6.68 | 4.97 | 450 | 3.43 3.18

WANG4 AMD no 1.04 | 0.63 | 0.42 | 0.43 | 0.28 | 0.27 0.22 0.19
IR(2) | 234 | 1.43 | 0.99 | 1.00 | 0.69 | 0.64 | 0.52 0.46

4.2 Triangular Solution

In this section, we focus on the time spent to obtain the solution. We apply
enough steps of iterative refinement to ensure that the componentwise relative
backward error (berr) is less than ¢ ~ 1016, Each step of iterative refinement
involves not only a forward and a backward solve but also a matrix-vector prod-
uct with the original matrix. In Table VII, we report both the time to perform
one solution step (using the factorized matrix to solve Ax = b) and, the time to
improve the solution using iterative refinement (lines with “IR”).

On a small number of processors (fewer than eight), the solve phase is almost
two orders of magnitude less costly than the factorization. On a large number
of processors, because the solve phase is relatively less scalable than the factor-
ization phases, the difference drops to one order of magnitude. On applications
for which a large number of solves might be required per factorization, this
could become critical for the performance and will be addressed in the future.
The cost of iterative refinement can significantly increase the cost of obtaining
a solution. The use of MC64 to preprocess the matrix can reduce the number of
steps of iterative refinement, Although both the solve times and iterative re-
finement times decrease very slowly with an increasing number of processors,
they still keep decreasing up to 512 processors.

4.3 Memory Usage

In Table VIII, we report the amount of memory actually used during the LU
factorization phase. This includes both reals and integers for the matrices, the
working arrays, and the communication buffers. We notice a significant re-
duction in the required memory per processor when increasing the number of
processors, showing good memory scalability. We also observe that there is little
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Table VIII. Memory Used During Factorization (in Megabytes, per Processor)

Number of processors
2x2 4x4 8x8

Matrix Ordering Avg Max Avg Max Avg Max
BBMAT AMD 113 114 50 51 33 34

ND 124 128 60 61 43 44
ECL32 AMD 113 115 42 44 24 25

ND 79 81 33 34 21 22
INV-EXTRUSION-1 ND 47 48 22 22 15 16
MIXING-TANK ND 55 56 23 23 14 15
TWOTONE MC64+AMD 66 80 35 41 24 24
WANG4 AMD 33 34 14 14 8 9

difference between the average and maximum memory usage, showing that the
algorithm is well balanced.

Note that memory scalability can be critical on globally addressable plat-
forms where parallelism increases the total memory used. On purely dis-
tributed machines such as the T3E, the main factor remains the memory used
per processor, which should allow large problems to be solved when enough
processors are available.

4.4 Scalability

As stated in Introduction, our goal is to make sparse LU factorization as scal-
able as sparse Cholesky. In this section we present the efficiency of our factor-
ization algorithm on model problems, both analytically and experimentaly, and
show that the algorithm and the implementation indeed meet our goal.

Consider the matrix from discretizing the Laplacian operator on a 3D cubic
grid with N unknowns. Using the standard nested dissection ordering, the fill
in the factored matrix is O(N*/3) and the number of floating-point operations
to factorize the matrix is O(N?2) [George and Liu 1981]. Let the P processors be
arranged as a square process grid. In our parallel algorithm (Figure 12), each
nonzero element is sent to at most /P processors. Therefore, the total commu-
nication overhead is O(N*2./P). When the total amount of work N? increases
proportionally with the overhead N4/3/P, the parallel efficiency can be kept
fixed, that is, N2 = ¢- N*3/P, for some constant c¢. Rewriting this, we have the
work-processor relation: N2 = ¢3 . P3/2, This function shows the growth rate of
the amount of work required to keep fixed efficiency as P increases, and is called
the isoefficiency function [Kumar et al. 1994]. A small isoefficiency function
means a small increase in the amount of work is sufficient to keep constant ef-
ficiency with increasing number of processors, and hence the parallel algorithm
is scalable. Rewriting it in another way, we get the memory-processor relation:
N*43 =c?. P. That is, like the dense LU algorithm in ScaLAPACK [Blackford
et al. 1997] and the sparse Cholesky algorithm in PSPACES [Gupta et al. 1997],
the parallel efficiency can be maintained constant if the memory per processor
is constant.

We now report the measured performance for the model problems with 11-
point discretization. Both 3D cubic (NX = NY = NZ) and rectangular (NX, NX/4,
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Table IX. Factorization Time (in Seconds), the Megaflop Rate, and Parallel Efficiency (Eff.) on the
Cray T3E

Cubic grids Rectangular grids

Grid | flops Eff. Grid size flops Eff.
P size | (10°) time Mflops (%) | NX NY NZ | (109 time Mflops (%)
1| 29 7.2  56.3 127.2 100 | 96 24 12 4.5 333 133.4 100
2| 33 159 61.8 257.1 101 | 110 28 13 9.6 37.6 250.9 94
4| 36 26.8 52.0 5149 101 | 120 30 15 179 36.3 491.5 92
8| 41 60.0 60.2 996.5 98 | 136 34 17 36.6 36.3 923.0 86
16 | 46 | 1179 59.8 19715 97| 152 38 19 72.7 422 1719.6 81
32| 51 | 2249 64.7 3476.7 85| 168 42 21 | 135.3 43.8 30846 72
64 | 57 | 4447 673 66126 81 | 184 46 23 | 236.0 46.6 5059.3 59
128 | 64 | 8864 71.1 124629 77 | 208 52 26 | 4856 56.1 86522 51

NX/8) grids are used. When increasing the number of processors, we tried to
maintain a constant number of operations per processor while keeping as much
as possible the same shape of grids. The size of the grids used, the number
of operations, the timings, the Megaflop rates, and the parallel efficiency are
reported in Table IX.

If the algorithm were perfectly scalable, the parallel runtime would be con-
stant. Because of various overheads, this is not usually true. But from the
timing results we see that the time increase is not very much even up to 128
processors. The results on parallel efficiency show that the algorithm is more
scalable for cubic grids than for rectangular grids, since the cubic grids repre-
sent the best possible regular and balanced problems. Here, the efficiency on
p processors is computed as the ratio of the Megaflop rate per processor on p
processors over its Megaflop rate on one processor. For cubic grids, the algo-
rithm maintains greater than 95% efficiency up to 16 processors, and greater
than 75% efficiency even up to 128 processors. But for rectangular grids, the
respective efficiency figures are 80% and 50%.

4.5 Load Balance and Communication/Synchronization Overhead

The efficiency of a parallel algorithm depends mainly on how the workload is
distributed and how much time is spent in communication. One way to measure
load balance is as follows. Let f; denote the number of floating-point operations

performed on process i. We compute the load balance factor B = PZ#X{’()M In
other words, B is the average workload divided by the maximum workload.
It is clear that 0 < B < 1, and higher B indicates better load balance. The
parallel runtime is at least the runtime of the slowest process, whose workload
is highest. In Table X we present the load balance factor B for both factorization
and solve phases. As can be seen from the table, the distribution of workload is
good for most matrices, except for TWOTONE.

In the same table, we also show the fraction of the runtime spent in commu-
nication or synchronization, that is, the parallel overhead. This includes the
time for MPI calls and the idle time waiting for a message to be sent or to ar-
rive. The amount of overhead is quite excessive; on 64 processors, more than
50% of the total factorization time is in overhead. For triangular solve, which
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Table X. Load Balance and Communication Overhead on 64 Processors Cray T3E

| BBMAT | ECL32 | INV-EXTRUSION-1 | MIXING-TANK | TWOTONE | waNG4
Load balance measure
B | 18 83 87 92 47 84
Bgy, 86 89 93 94 52 78
Fraction of the time spent in communication and synchronization
fact .64 .67 .64 .55 .76 .78
sol .85 .83 .86 .85 .84 .84

requires a relatively smaller amount of computation, communication and syn-
chronization take more than 85% of the total time. We expect the percentage of
overhead will be even higher with more processors, because the total amount
of computation is more or less constant.

Although TwoTONE is a relatively large matrix, its factorization does not scale
as well as for the other large matrices. One reason is that the present submatrix
to process mapping results in very poor load distribution. Another reason is due
to poor task scheduling that results in large overhead. When we look further
into the overhead, we find that most overhead comes from the idle processors
either waiting to receive a column block of L sent from a process column on
the left (step (1) in Figure 12), or waiting to receive a row block of U sent from
a process row from above (step (2) in Figure 12). Clearly, the critical path of
the algorithm is in step (1), which must preserve certain precedence relation
between loop iteration steps. Our pipelining method shortens the critical path
to some extent, but we expect the length of the critical path can be further
reduced by a more sophisticated DAG (task graph) scheduling. For the solve,
we find that most overhead comes from the idle processors waiting to receive
a message (line 10 in Figure 13). So on each process there is not much work
to do but a large amount of idle time. These synchronization overheads also
occur in the other matrices, but the problems are not so pronounced as for
TWOTONE.

Another problem with TwoToNE is that supernode size (or block size) is very
small, only two columns on average. This results in poor uniprocessor perfor-
mance and low Megaflop rate.

4.6 Large Applications

In this section, we describe two application areas in which SuperLU_DIST has
played a critical role. The first application is in the solution of a long-standing
problem of scattering in a quantum system of three charged particles. This
requires solving the complex, nonsymmetric, and very ill-conditioned linear
systems. The largest system solved is of order 8 million. SuperLU DIST is used
in building the block diagonal preconditioners for the CGS iterative solver. The
number of CGS iterations ranges between 12 to 35. Since each CGS iteration
requires two preconditioning steps, 24 to 70 solutions of the diagonal blocks are
required. For a block of size 1 million, SuperLU DIST takes 1209 seconds to fac-
torize using 64 processors of the IBM SP at NERSC (this is done only once), and
it takes 26 seconds to perform triangular solutions (this needs to be done re-
peatedly in each preconditioning step). The total execution time is about 1 hour.
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See Baertschy and Li [2001] for more details. The scientific breakthrough result
was reported in a cover article of Science [Rescigno et al. 1999].

More recently, we have been collaborating with researchers at the Stanford
Linear Accelerator Center to develop alternative eigensolvers for Omega3P, a
widely used electromagnetics code in accelerator design. In this application the
interior eigenvalues and eigenvectors of a large sparse generalized eigenvalue
problem are needed. We integrated SuperLU DIST with PARPACK [Lehoucq
et al. n.d.], a parallel Lanczos code, to construct a shift-and-invert eigensolver.
For a system of order 1.3 million, PARPACK needs about 4.5 solves for each
eigenpair. For each solve, SuperLU DIST takes 39 s using 32 processors of the
IBM SP at NERSC. The factorization is done once, and takes 553 secs. The total
time for finding 10 interior eigenpairs is 42 min.

5. RELATED WORK

Duff and Koster [1999] studied the benefits of using MC64 to permute large en-
tries onto the diagonal in both direct and iterative solvers, and in precondition-
ing. For the multifrontal direct solver, they showed that using the large-diagonal
permutation, the number of delayed pivots were vastly reduced in factorization.
In the iterative methods such as GMRES, BiCGSTAB, and QMR using ILU
preconditioners, they showed that convergence rate is substantially improved
in many cases when the large-diagonal permutation is employed. Benzi et al.
[2000] conducted more extensive experiments on the effect of MC64 on precon-
ditioning strategies. Chen [2001] also considered using MC64 to avoid pivoting
as much as possible in the ILU methods.

Amestoy et al. [2001a] developed a distributed-memory multifrontal solver,
called MUMPS. It is based on the symmetric pattern of AT + A, and performs
partial threshold pivoting. It uses partial static mapping based on the elimi-
nation tree of AT + A (1D for the frontal matrices and 2D for the root). The
distributed scheduling algorithm for LU factorization is dynamic and asyn-
chronous. We performed a comprehensive comparison between SuperLU_DIST
and MUMPS [Amestoy et al. 2001b]. The general observations are: SuperLU_DIST
may need one more step of iterative refinement than MUMPS to achieve the same
level of accuracy; SuperLU DIST preserves the sparsity and the asymmetry of
the factors better, and usually requires less memory; MUMPS is faster on smaller
number of processors (e.g., fewer than 64), but SuperLU_DIST is faster on larger
number of processors and shows better scalability.

A few other distributed-memory unsymmetric sparse direct solvers have
been developed. Comparing SuperLUDIST with those solvers remains fu-
ture work. SPOOLES is a supernodal, left-up-looking solver [Ashcraft and
Grimes 1999]. The fill reducing ordering is a hybrid approach called multi-
section [Ashcraft and Liu 1998], which is applied to the structure of AT + A. It
performs threshold rook pivoting with both row and column interchanges. The
task dependency graph is the elimination tree of AT + A. S+ is a supernodal,
right-looking solver [Fu et al. 1998]. The algorithm is based on the following
static information. The sparsity pattern of the Householder @R factorization
of A contains the union of all sparsity patterns of L and U for all possible row
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interchanges [George et al. 1988; George and Ng 1987]. This has been used to
do both memory allocation and computation conservatively (on possibly zero
entries), but the structural upper bound can be arbitrarily loose, particularly
for matrices arising from circuit and device simulations.

6. CONCLUDING REMARKS AND FUTURE WORK

In this paper, we presented the details of the algorithms used in SuperLU DIST
solver. We demonstrated numerical stability of the GESP algorithm, and
showed that a scalable implementation is feasible for this algorithm because of
the static data structure and scheduling optimizations. Another added benefit
of GESP is that it opens new possibilities to study better fill reducing ordering
algorithms for unsymmetric LU factorization. Our goal is to have sparse LU
factorization as scalable as sparse Cholesky. This is inherently a harder prob-
lem than sparse Cholesky, because two different factors L and U are involved.
Our future work remains in several areas:

—Parallel preordering and symbolic analysis. Steps (1) and (3) of the GESP
algorithm (see Figure 1) are still sequential. Although they usually do not
take much time, we need to parallelize this step in order to improve memory
scalability, if not timewise. The parallel algorithm may be different from the
sequential algorithm used in MC64, because MC64 is inherently serial.

—Improve parallel efficiency of factorization and triangular solves. Although
the solver exhibits good scalability now, the parallel overhead is still large for
large numbers of processors (see Section 4.5). Several improvements could
be made. For better load balance, we can use more general functions than
2D block cyclic to map submatrices to processors. To reduce the synchroniza-
tion overhead, we can relax some task scheduling constraints imposed by
the current pipelining algorithm. For example, the blocks in a block column
can be factorized by the column processes independently if sparsity permits
doing so. A more sophisticated scheduling algorithm can be implemented to
exploit the parallelism from the elimination DAGs, which could simultane-
ously schedule independent tasks from multiple steps of the factorization
(see Figure 12). We expect these improvements will have a large impact for
very sparse and/or very unsymmetric matrices, such as TWoToNE, and for
the orderings that give wide and bushy elimination DAGs, such as nested
dissection.

To speed up the triangular solve, we may apply some graph coloring heuris-
tic to reduce the number of parallel steps [Jones and Plassmann 1994].
There are also alternative algorithms other than substitutions, such as those
based on partitioned inversion [Alvarado et al. 1993] or selective inver-
sion [Raghavan 1995]. However, these algorithms usually require prepro-
cessing or different matrix distributions than the one used in our factor-
ization. Whether the preprocessing and redistribution will offset the benefit
offered by these algorithms will probably depend on the number of right-hand
sides.

—Improve numerical robustness. More techniques can be used; these include
performing iterative refinement with extra precise residuals [Li et al. 2002]
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and using dynamic precision during the factorization; see Appendix A of Li
and Demmel [2002].
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